Second-order duality for nondifferentiable minimax fractional programming problems with generalized convexity

نویسنده

  • Meraj Ali Khan
چکیده

*Correspondence: [email protected] Department of Mathematics, University of Tabuk, Tabuk, Kingdom of Saudi Arabia Abstract In the present paper, we are concerned with second-order duality for nondifferentiable minimax fractional programming under the second-order generalized convexity type assumptions. The weak, strong and converse duality theorems are proved. Results obtained in this paper extend some previously known results on nondifferentiable minimax fractional programming in the literature. MSC: 90C32; 49K35; 49N15

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimality Conditions and Duality in Nondifferentiable Minimax Fractional Programming with Generalized Convexity1

We establish sufficient optimality conditions for a class of nondifferentiable minimax fractional programming problems involving (F, α, ρ, d)convexity. Subsequently, we apply the optimality conditions to formulate two types of dual problems and prove appropriate duality theorems.

متن کامل

Second-Order Duality for Nondifferentiable Minimax Fractional Programming Involving (F, ρ)-Convexity

We focus our study to formulate two different types of second-order dual models for a nondifferentiable minimax fractional programming problem and derive duality theorems under (F, ρ)-convexity. Several results including many recent works are obtained as special cases.

متن کامل

Duality in nondifferentiable minimax fractional programming with generalized convexity

A Mond–Weir type dual for a class of nondifferentiable minimax fractional programming problem is considered. Appropriate duality results are proved involving (F,a,q,d)-pseudoconvex functions. 2005 Elsevier Inc. All rights reserved.

متن کامل

Duality in Minimax Fractional Programming Problem Involving Nonsmooth Generalized (F,α,ρ,d)-Convexity

In this paper, we discuss nondifferentiable minimax fractional programming problem where the involved functions are locally Lipschitz. Furthermore, weak, strong and strict converse duality theorems are proved in the setting of Mond-Weir type dual under the assumption of generalized (F,α,ρ,d)-convexity.

متن کامل

Higher-order symmetric duality for a class of multiobjective fractional programming problems

Correspondence: gaoyingimu@163. com Department of Mathematics, Chongqing Normal University, Chongqing 400047, China Abstract In this paper, a pair of nondifferentiable multiobjective fractional programming problems is formulated. For a differentiable function, we introduce the definition of higher-order (F, a, r, d)-convexity, which extends some kinds of generalized convexity, such as second or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013